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Preference of attractors in noisy multistable systems
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A model system exhibiting a large number of attractors is investigated under the influence of noise. Several
methods for discriminating two qualitatively different regions of the noise intensity are presented, and the
phenomenon of noise-induced preference of attractors is reported. Finally, the relevance of our findings for
detection of multiple stable states of systems occurring in nature or in the laboratory is pointed out.
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I. INTRODUCTION

Typically, systems studied in the physical literature po
sess only a small number of coexisting attractors, which
the asymptotic states in the state space, corresponding t
long-term behavior. The long-term behavior becomes m
involved if a system exhibits a larger number of coexisti
attractors, because there exists a nontrivial relationship
tween these coexisting asymptotic states and their basin
attraction. The state which is finally approached depends
cially on the initial condition. This behavior, called multist
bility, is found in a variety of systems from different disc
plines of science, like semiconductor physics@1–3#,
chemistry @4–7#, neuroscience@8–10#, and laser physics
@11–13#. It was systematically investigated for the first tim
in Refs.@14# and@15# by performing experiments with a ga
laser and numerical simulations of the Duffing oscillator,
spectively. Usually in multistable systems the basins of
traction of different attractors are complexly interwoven, a
separated by one or several chaotic saddles. The dimen
of the basin boundaries is very close to the dimension of
state space. In addition, the introduction of noise to the
namics of such a multistable system enhances even mor
‘‘complexity,’’ by introducing new dynamical behavior. Th
different basins of attraction, although they may already
fractal, change in a very intricate fashion. There exist
competition between the attractiveness toward regular
tion in the neighborhood of an attractor and the jump
among the different attractors induced by the noise@16#. In
fact, the noise kicks the orbit out of the open neighborho
of the attractor into the basin boundary. There the traject
spends a certain amount of time until it reaches again
neighborhood of the same attractor or possibly another
tractor. This process, in which the trajectory is in the neig
borhood of the attractor or in the basin boundary regi
keeps repeating. The length of these two character
phases of motion varies irregularly, and depends on the n
amplitude. This behavior is closely related to the so-cal
chaotic itinerancy@17–19#, which has also been observe
experimentally@20#. Recent studies on coupled oscillat
systems with delay in the presence of noise@21# also re-
ported phase transitions. This kind of multistability is also
PRE 591063-651X/99/59~5!/5253~8!/$15.00
-
re
the
re

e-
of
u-

-
t-
d
ion
e
-

the

e
a
o-
g

d
ry
e
t-
-
,
ic
se
d

mechanism for memory storage and temporal pattern rec
nition @22,9,10#. A control study of systems with multiple
coexisting attractors, and the steering of trajectories towa
desired attractor, was performed in Refs.@16,23#. Work that
is closely related to the one presented here, but applie
coupled map systems, was carried out by Kaneko@24,25#.
By treating high-dimensional systems, he found noi
induced selectivity for certain attractors. Similar results we
also obtained in Ref.@26#, investigating the Duffing oscilla-
tor and a circle map. However, in both works the impleme
tation of noise is different from ours. This paper aims a
study of the influence of noise on highly multistable syste
with a fractal basin boundary. It is organized as follows.
Sec. II, the model is introduced, and the relevant proper
of the system are presented. Basic dynamical effects
duced by noise are described. In particular, we present
methods for distinguishing between the dynamics domina
by attractor hopping and the one characterized by diffus
through the state space. Both phenomena are caused b
addition of noise, but yield qualitatively different dynamic
In Secs. III and IV the consequences of small and la
noise, respectively, are discussed. As a main result, we a
that certain attractors are preferred due to the presenc
small amounts of noise. Section V gives a summary.

II. MODEL

As our prototype model, we study the behavior of a pe
odically kicked mechanical rotor without gravity in the pre
ence of noise. The motion of the rotor is usually modeled
differential equations. But taking into account that the kic
are only applied at certain discrete timest50,T,2T, . . . , one
can also model it by the following two-dimensional map:

xk115xk1yk1dx ~mod 2p!,

~1!

yk115~12n! yk1 f 0 sin~xk1yk!1dy ,

wherex corresponds to the phase,y corresponds to the an
gular velocity, the parametern is the damping, andf 0 the
5253 ©1999 The American Physical Society
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5254 PRE 59SUSO KRAUT, ULRIKE FEUDEL, AND CELSO GREBOGI
strength of the forcing. The termsdx and dy , where
Adx

21dy
2<d, are the amplitude of the uniformly and inde

pendently distributed noise.
The noiseless system (dx5dy50) was studied in detail in

Ref. @27#. There are two limiting cases. If the damping
maximal (n51), a one-dimensional circle map with ze
phase shift is obtained. This map possesses only one attr
in large regions of the parameter space. For zero damp
the conservative limit, the Chirikov standard map resu
@28#. Islands of stability and chaotic motion coexist. T
number of regular periodic states represented by theKAM
islands is believed to be infinite. The two eigenvalues
these periodic orbits are complex conjugate, but their ab
lute values are exactly 1. The dynamics takes place on
torus @0,2p#3@0,2p#. In particular, the family of period 1
orbits is given by (x5p,y5m2p),m50,61, . . . ,which are,
due to mod 2p, also in they coordinate, all mapped onto th
one withm50. Orbits of higher periods, so-called seconda
islands, are grouped around these period 1 orbits, which
respond to primary islands. These islands around isla
build a highly intricate hierarchy.

The introduction of dissipation changes the periodic orb
into sinks, since the absolute values of both eigenvalues
now slightly less than 1. The motion is now located on
cylinder @0,2p#3R, and the period 1 periodic orbits for dif
ferentm values become discernible. There is still some hi
archical organization of higher periodic orbits surroundi
the period 1 orbits. However, the hierarchy known from t
conservative case is disturbed by the dissipation. The num
of periodic orbits is finite in the dissipative case, but can
made arbitrarily large by reducing the damping. By fixin
the damping but varying the kick strengthf 0, a complex
bifurcation diagram is obtained. Periodic orbits of low pe
ods are generated through saddle-node bifurcations and
eventually undergo a period doubling cascade that end
chaos. However, the chaotic intervals in, say, parametef 0
are extremely small and hardly detectable numerically.

Let us fix the values of the parameters atn50.02, which
is a rather small damping, andf 053.5 for the kick strength.
For these parameter values, the periodic orbits of perio
have not yet undergone the first period doubling. For t
parameter set, there are no chaotic attractors, as they a
general rare in multistable systems with small dissipat
@29,30#. We numerically find 111 coexisting periodic orbi
for the noiseless case, the highest period being 32. T
were found by iterating 106 initial conditions on a grid in
part of the state space@0,2p#3@2 f 0 /n, f 0 /n#. This part of
the cylinder is the trapping region in state space, where
attractors are located. More than 99.9% of all found orb
are of periods 1 and 3, so all other periods do not play
important role in the following.

If noise is added to the dynamics, the trajectory alterna
between almost periodic motion in the neighborhood of
attractor and chaotic motion in the basin boundary region
a very complex way. This behavior is illustrated in Fig.
where thex andy coordinates of the system are plotted for
large number of iterations and a noise level ofd50.1.
Clearly, there are almost periodic motions interspersed
random bursts. Although the periodic orbits are located
the state space in a hierarchical structure, there is no
apparent hierarchy of the jumping between the attract
tor
g,
s

f
o-
he

r-
ds

s
re

-

er
e

ey
in

1
s
in

n

ey

ll
s
n

s
n
n
,

y
n
an
s,

though the investigations on probability transition and e
tropy @16# suggest the existence of preferred transitions a
of an itinerancy; however, this needs further investigation

For the noisy dynamics, we ascertain that the motion is
the vicinity of a given periodic orbit in the following way
Every initial condition is checked after eachk (;30) itera-
tions, whether the orbit stays for a certain number of tim
stepsl (;53period) close to the periodic orbit of the nois
less system, whereby closeness was specified by a maxim
distance of aboutj '10d. If these conditions are satisfied
the orbit is considered to be trapped in the neighborhood
the specific attractor. However, the exact numerical value
these choices (k,l , j ) do not possess any crucial meanin
and changing them by moderate amounts yields similar
sults. Using these criteria to ensure that the orbit is in
vicinity of a periodic attractor, we finally investigate how th
basins of attraction for different attractors change as we v
the noise level. For this purpose, we stop iterating the tra
tory as soon as it reaches the neighborhoodj of an attractor
for the first time. Hereby we disregard the fact that the t
jectory can be kicked out of this neighborhood by the no
at a later time. In Fig. 2 we illustrate the effect of noise by

FIG. 1. Dynamics of the kicked single rotor under the influen
of noise with intensityd50.1. Top: angular velocityy; bottom:
phase of the rotorx.

FIG. 2. Basin of the fixed point (x5p,y50) for increasing
noise levels.~a! d50. ~b! d50.01. ~c! d50.1. ~d! d50.3.
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FIG. 3. Probability densityP(x,y) in the rect-
angle @0,2p#3@23p,3p# for increasing noise
levels. The same noise levels as in Fig. 2 a
used.~a! d50.001. ~b! d50.01. ~c! d50.1. ~d!
d50.3. On the top of each figure, a contour pl
of a certain probability densityPc(x,y) is shown.
Pc(x,y) has the values~a! 2.431024, ~b! 2.5
31025, ~c! 2.331024, and~d! 2.231025.
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series of pictures of the basins of attraction for the main fix
point (x5p,y50) for different noise amplitudes. For a tin
noise amplitude (d50.01) a great similarity with the noise
less basin is seen, including the two embedded open ne
borhoods of the two period 3 attractors. The fine struct
becomes increasingly blurred with increasing noise intens
e.g., (d50.1). For a large noise level (d50.3) the basic
structure is still present, but it starts to become washed
For each initial condition different noise realizations are us
to create the picture of the basin of attraction. The size of
basins and the qualitative structure remain the same u
other noise realizations. Let us now use a probabilistic
proach which is often employed in the study of noisy s
tems. Instead of focusing on individual trajectories, we foc
on the probability density depending on the state variablex
and y. Similar conclusions to these obtained for single t
jectories are drawn from the behavior of the probability de
sity, as shown in Fig. 3. In this figure we use 1000 init
conditions, randomly distributed in the rectangle@0,2p#3
@23p,3p#, and we iterate each one for 10 000 steps. T
region of the state space is covered with a 3003300 grid,
and every visit of a grid cell is counted, thus creating
numerically generated probability density. The same no
amplitudes as used in Fig. 2 are also chosen in Fig. 3, ex
for the substitutiond50.001 for d50 to avoid d-peaked
distribution. As can be seen, the peaks of the period 1 an
orbits become increasingly broad, until almost no structur
present anymore, indicating the predominance of diffus
due to the noise. Figures 2 and 3 also confirm our numer
procedure. For instance, they show that the period 3 or
are still present in the noisy dynamics as well as in the lo
term behavior as approximated by the first visit to a perio
orbit. Both figure sequences, Figs. 2 and 3, illustrate
process of loss of fine-scale structure of the basins of att
tion with increasing noise intensity. As we will describ
next, this process can be characterized as a transition
small to large noise levels with different consequences
the dynamics of the system.

III. METHODS

The characteristic change in the role of the noise a
noise level of about 0.05,d,0.1 is examined by four dif-
d
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ferent methods. First, we consider the Lyapunov exponen
a trajectory, as depicted in Fig. 4. In the noiseless case,
periodic motion occurs as long-term behavior, yielding
negative Lyapunov exponent. By contrast, the introduct
of noise yields a positive Lyapunov exponent. It becom
significantly positive ford'0.047. This value is determine
by using finite-time Lyapunov exponents lT

5(1/T)( i 51
T lnu(df/dx)iu. HereT is the length of the time in-

terval, and (d f /dx) i is the Jacobian of the map for each tim
step i. When we compute thoselT for an ensemble of
L (L@1) trajectories at a given time intervalT, we obtain a
set of positive finite-time exponentsl i

1 , and a set of nega
tive onesl i

2 corresponding to chaotic or almost period
motion, respectively. Using this distribution of finite-tim
Lyapunov exponents, we estimate the noise intensity
which the asymptotic Lyapunov exponentl becomes posi-
tive. This noise value satisfies

l~d!5
1

L S (
i 51

M

l i
11(

i 51

N

l i
2D'0. ~2!

FIG. 4. Maximum Lyapunov exponent (L) and average length
of transients (n) vs noise level. For each noise intensity,lmax and
the length of the transients are calculated by averaging over
trajectories with 106 iterations each. The inset shows the crossing
the Lyapunov exponent curve through zero. This takes placed
'0.047 with a slope of 0.27.
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FIG. 5. Histograms of finite-time Lyapunov
exponents for different noise levels. The traje
tory length is 5000. Altogether 10 000 Lyapuno
exponent values are computed for each pictu
using 50 trajectories. The bin size is 0.002.~a!
d50.075. ~b! d50.09. ~c! d50.1. ~d! d50.11.
~e! d50.125.~f! d50.5.
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HereL is the total number of trajectories, whileM (N) is the
number of trajectories yielding positive~negative! finite-time
Lyapunov exponentsl i

1 (l i
2), respectively. This effect is

an example of the so called ‘‘noise-induced chaos,’’ fi
observed in the logistic map@31,32#, and subsequently in a
variety of systems, like Josephson junctions@33#, supercon-
ducting quantum interference devices@34#, and the Kramers
oscillator @35#. In Fig. 4, we also plot the average length
the chaotic bursts between regular motions in the neigh
hood of attractors~cf. Fig 1!. We measure this length of th
chaotic transients by splitting 50 trajectories of 106 iterations
into blocks of five iterations, and checking in each of the
blocks whether the motion is in the vicinity of an attractor
is chaotic. The functional form of these averaged lengths
the chaotic bursts very much resembles the behavior of
Lyapunov exponents. This has to be expected, accordin
Eq. ~2!, since the bursting corresponds to a posit
Lyapunov exponent, while periodic motion corresponds t
negative exponent. Thus for higher noise amplitudes
overall motion is chaotic, albeit almost periodic phases
interspersed into the dynamics. This indicates that the ph
of jumping in the intertwined basin boundary, consisting
chaotic saddles, gain increasingly more weight.

The second method consists of searching for the mini
noise level to escape from an attractor into the basin bou
ary region. We require that noise should be able to rem
the trajectory from every neighborhood of a periodic orb
Though the noise level depends on the size of the neigh
hood as well as the eigenvalues of the periodic orbit, as
will argue later, we consider the largest basin of attract
(x5p,y50). We increase the noise intensity gradually, a
look for the minimum value ofd at which the trajectory
leaves the open neighborhood of the attractor for the
time. By averaging over 200 trajectories with different no
realizations and a very large number of iterations (53107),
this results ind'0.06. Below this value, the trajectory, a
though being contaminated by noise, may be trapped in
open neighborhood of this attractorforever. Above this value
the trajectory diffuses freely over the whole state space, s
ing only a finite timein the neighborhood ofany attractor.

A third method is considered by looking at the distrib
t
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tion of finite-time Lyapunov exponents. These distributio
are approximated by histograms of the finite-time expone
lT . They are computed forT55000 and using 50 time se
ries of length 1 000 000. This yields 10 000 Lyapunov exp
nent values which are enough for a sufficiently good sta
tics. Smaller time intervalsT do not give good results, sinc
the eigenvalues are complex and, by this fact, spurious pe
appear in the histograms, due to the rotation of the eigenv
tors. For the noiseless system, the motion is attractive,
hence the finite-time Lyapunov exponents are negat
peaking about the maximum Lyapunov exponent, whose
merical value islmax'20.01. As the noise intensity in
creases, the peak is shifted towards higher values oflmax and
starts to flatten out. At a noise level ofd50.075, there is no
longer any negative Lyapunov exponent, and a second p
at a higher value begins to develop; see Fig. 5~a!. This sec-
ond peak becomes increasingly dominant and develops in
Gaussian distribution, displayed in Figs. 5~b! and 5~c!. For
d50.125 @Fig. 5~e!# the Gaussian part is fully developed
and the peak associated with the periodic motion is no lon
visible. Increasing the noise further yields a single Gauss
distribution @Fig. 5~f!#, whose mean is in accordance to th
maximal Lyapunov exponent of Fig. 4. The peak cor
sponding to the periodic motion has disappeared complet
This transition thus takes place at around 0.08,d,0.12.

The fourth method is provided by considering the Four
spectrum of a noisy time series. The investigation of
spectra is motivated by a claim of Arecchi and co-worke
@36,37#, who stated that a multistable system with a frac
basin boundary disturbed by noise in such a way that att
tor hopping occurs exhibits a 1/f a spectrum. This claim is
validated by our Figs. 6–8. Only in the case of an interm
diate noise level ofd50.085 can the nontrivial low fre-
quency part of the spectrum be observed, which is well
scribed by S( f );1/f a and a'1 ~Fig. 7, solid line!. In
contrast, if the noise is too weak for exiting the attractor~Fig.
6! or too large for staying close to an attractor for a long
time ~Fig. 8!, the spectrum is similar to that of Brownia
motion. Therefore, it can be very well fitted by a Lorentzi
with a flat ~white! low frequency part and a 1/f 2 high fre-
quency part. Hence this is a criterion for distinguishi
among different noise levels.
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Altogether there exists a qualitative change in the syste
dynamics around a certain noise level of 0.05,d,0.1. Be-
low this transition the dynamics of the system is charac
ized by a motion consisting of regular phases in the nei
borhood of attractors and chaotic phases on the b
boundary, establishing the hopping between attractors.
yond the crossover, noise induced diffusion over the s
space is the dominating process. Because of this phen
enology, we split the treatment into small and large no
effects.

IV. EFFECTS OF SMALL NOISE

As pointed out in Sec. III increasing noise results in a lo
of fine structure in the basins of attraction. The small bas
seem to be more sensitive than the large ones. To exp
this effect in more detail, we investigate the influence
noise on the size of the basins. In Fig. 9, the number of ini
conditions terminating~according to our numerical proce

FIG. 6. Time series of the angular velocityy ~top! and the cor-
responding fast Fourier transform~FFT! spectrumS( f ) ~bottom! for
a noise level ofd50.01 and a length of 216565 536. The noise is
not strong enough to kick the orbit out of one of the attracto
therefore, no hopping takes place and the whole spectrum follo
Lorentzian.

FIG. 7. Time series of the angular velocityy ~top! and the cor-
responding FFT spectrumS( f ) ~bottom! for a noise level ofd
50.085. Here a competition between hopping and remaining in
attractor exists, which results in the low frequency part of the sp
trum, which can be fitted byS( f );1/f a for f ,0.005~solid line!.
s
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e-
te
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e

s
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dure! on the period 1 orbits with differentm is plotted
against the noise level. It can clearly be seen that the cu
for differentm all possess roughly the same features, nam
there is an increase up to a maximum value, followed by
exponential decrease taking place at lower noise intensity
higher m values. The relevant region for this behavi
stretches to aboutd50.08, confirming once again the thres
old for the dynamics dominated by attractor hopping.
stated above, the decay after the maximum value is w
fitted by an exponential. The determination of the slopes
these exponentials reveals that the slopes also yield rou
an exponential scaling. Furthermore, the starting points
the decrease in the dependence ofm yields an exponentia
law as well.

All these features are even more robust by consider
multiplicative noise. Generally, multiplicative noise is a
plied by perturbing the form of the function. In our case th
amounts to altering the kick strengthf 0, and we do this by
introducing a noise term viaf 0° f 01d into the second of
Eqs.~1!. This results in the additive termd sin(xk1yk) acting

;
a

n
c-

FIG. 8. Time series of the angular velocityy ~top! and the cor-
responding FFT spectrumS( f ) ~bottom! for a noise level ofd
50.2. For such a high noise intensity diffusive motion dominat
and the trajectory does not remain for an appreciable length of t
in the neighborhood of an attractor. The entire spectrum is ag
very well fitted by a Lorentzian.

FIG. 9. Number of initial conditions converging to period
attractors with increasingm from top (m50) to bottom (m510).
Because of the symmetrym51k andm52k are averaged. Alto-
gether 106 initial conditions are iterated.
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on the angular velocity only. The strength of the resulti
noise depends then on the present location of the trajec
and it is always<d. Figure 10 exhibits the correspondin
information to Fig. 9. The expected behavior occurs at hig
noise intensities, and is due to the effective reduction of
influence of the noise by multiplyingd with the sin term. In
particular, for the fixed pointsy52pm, x is close top, and
thus the sin term is very small. For multiplicative noise t
exponential decay is even more pronounced. Again
slopes and the snap-off points scale exponentially.

For higher noise strength the attractors with small bas
lose part of their basins, while the ones with an already la
basin are preferred. Thus the fine structure of the syste
washed out due to the noise. This leads to an important c
sequence for the behavior of multistable systems. Even if
number of coexisting attractors is very high in a determin
tic system, one observes only few of those attractors in
presence of noise. The behavior is dominated by a few
ferred attractors, while the majority of them ‘‘disappears
Since in nature or in experimental systems noise is alw
inevitable, one can expect that only a tiny number
asymptotic states can be ‘‘measured’’ while the majority
mains ‘‘hidden.’’ On the other hand, if the noise level co
responds to the maxima in Fig. 9, the opposite effects occ
that is, attractors with a small basin gain more initial con
tions, and the basins of many of them become even large
compared with the no noise basin. This is especially true
the case of the period 3 attractors. This remarkable ef
may be explained by the fact that the eigenvalues of
period 3 orbits are slightly smaller than those of the perio
fixed points. Additionally, the open neighborhoods of t
period 3 attractors are located within the open neighborh
of the fixed points; see Fig. 2. Forf 054, this is not the case
and the effect cannot be observed. This effect of a no
induced increase in the size of the basin of attraction
been also observed in coupled map lattices@24,25# and a
bistable system@26#. The bistable system exhibits two per
odic orbits with a fractal basin boundary, and the condit
that one basin has to be ‘‘inside’’ the other one is trivia
fulfilled, while in the coupled map lattice case the attract
possess riddled basins of attraction. This riddling also p
vides the seemingly necessary condition for the appeara
of noise-induced selectivity of certain attractors.

To obtain a better understanding for the effect of noise

FIG. 10. Same as in Fig. 9 form50 ~top! to m57 ~bottom!, but
with multiplicative noise.
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our nonlinear model, we study a very simple linear syst
with noise, given by

xk115axk1dx ,

~3!

yk115byk1dy ,

wherea and b are less than 1. All nonlinearities and co
plings from the original model are absent here. A stable fix
point exists at (x50,y50), from which the orbit cannot es
cape. The maximum distanceD5max(uxu,uyu) of the orbit
from the fixed point is given by

D5(
i 50

`

max~ uau,ubu! id5
d

12 max~ uau,ubu!
. ~4!

In our nonlinear system, however, the norm of the maxim
eigenvalues for the period 1 fixed pointsulu is exactly iden-
tical for all m, while the minimum noise intensity
min(descape), for which the trajectories leave the attractors f
the first time, decreases withm, as shown in Table I. This
result underlines the importance of the nonlinearities in t
model. Furthermore, it is important to note that the eigenv
ues are close to the stability thresholdulu51. For noise in-
tensities larger than the minimum noise intens
min(descape), the trajectories leave eventually the open neig
borhood of the attractor. The escape times differ for ea
noise realization yielding an exponential distributionP(t)
;g exp@2g(t2topt)#, as shown in Fig. 11 form50. In prin-
ciple, by using the relation̂t2topt&51/g, the optimal es-

TABLE I. The modulus of the eigenvalues, the minimal noi
intensity necessary for escape, and the ‘‘potential’’ from Kram
law.

m ulu min(descape) U

0 0.98994952 0.061 0.034
1 0.98994952 0.05 0.022
2 0.98994952 0.041 0.015
3 0.98994952 0.031 0.0086
4 0.98994952 0.026 0.0065
5 0.98994952 0.021 0.0038

FIG. 11. Distribution of escape times^t& for the fixed pointm
50 ~the bin size is 50 000!.
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cape time can be determined. However, we numerically
tain only the approximate resulttopt<300.

Let us now look at the scaling of the mean escape tim
with increasing noise level. In Fig. 12 the mean escape tim
for differentm values are depicted. They follow Kramers la
^t(d)&; exp(U/d 2) very well, which is far from trivial in
cases where, like here, no potentialU exists @38,39#. The
ratio U/min(descape)

2 is roughly constant, which sugges
that, in first order, the stability of each attractor can be
proximated by a parabolic potential.

V. LARGE NOISE

When the noise intensity is increased over the transi
region of about 0.05,d,0.1, the stochasticity is the dom
nant part of the dynamics. This behavior is reflected in
autocorrelation functionCxx(t)ª(1/T)( t50

T (xt2^xt&)(xt1t

2^xt&) of a noisy trajectory. It decreases exponentially w
an exponent sharply rising at aboutd;0.09, the qualitative
behavior following roughly the curve of the maxim
Lyapunov exponent~Fig. 4!. However it is still different
from a pure random process, which is characterized by

FIG. 12. Escape timeŝt& vs 1/d2 for different fixed points in a
semilogarithmic plot (m50,1,2, and 3 from top to bottom!. The
slopes U correspond to the potential values of Kramers la
^t(d)&; exp(U/d2).
m

J

J

v

-

s
s

-

n

e

o

autocorrelation. This fact is also apparent in Fig. 2~d!. Al-
though much of the fine structure of the basin is blurred
the noise, it is still present. To classify this effect with me
sures of complexity is a current topic of our investigation

VI. DISCUSSION

In summary, we have investigated the influence of no
on a multiattractor system. In this paper, we exclusively u
independent and uniformly distributed noise. However,
main results are also obtained working with Gaussian no
which does not seem to introduce any significant differen
except for the fact that for each attractor a specific and fin
amount of noise is necessary to ‘‘kick’’ the trajectory out
its open neighborhood. The treatment of the behavior of
system in the presence of noise is split into two regions
noise intensity. The existence of a crossover region sepa
ing them is demonstrated by four criteria. Although the ex
numerical values resulting from these different methods
not agree completely, they yield a coherent and conclus
picture. For low noise, attractor hopping is the dominant p
of the dynamics, and the interesting phenomenon of no
induced preference of certain attractors is observed. Ab
the crossover region, mainly diffusive motion exists, and
fine-scale dynamics is not relevant anymore. By and lar
the investigation sheds some light on the measuremen
multistable systems in nature, where in spite of the la
number of attractors only few arede factodetected. Conse
quently, the observation of only a small number of sta
states in physical systems may not necessarily lead to
conclusion that the system does not possess more of th
There may still be a larger number of attractors, which
experimenter is not aware of: they are just hidden by
inherent noise.
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